
ROSCO
Release 2.8.0

Nikhar J. Abbas, Daniel S. Zalkind

May 19, 2023

CONTENTS

1 Standard Use 3

2 Technical Documentation 5

3 Survey 7

4 License 9
4.1 Installing the ROSCO tools . 9

4.1.1 Installing the ROSCO controller . 10
4.1.2 Installing the ROSCO toolbox . 12
4.1.3 Full ROSCO Installation . 12
4.1.4 Getting Started . 13

4.2 Standard ROSCO Workflow . 13
4.2.1 Reading Turbine Models . 13
4.2.2 Tuning Controllers and Generating DISCON.IN . 13
4.2.3 Running OpenFAST Simulations . 14
4.2.4 Testing ROSCO . 15

4.3 ROSCO Toolbox Structure . 15
4.3.1 ROSCO Toolbox File Structure . 15
4.3.2 The ROSCO Toolbox Tuning File . 16

4.4 ROSCO Controller Structure . 16
4.4.1 ROSCO File Structure . 16
4.4.2 The DISCON.IN file . 17

4.5 API changes between versions . 21
4.5.1 2.7.0 to 2.8.0 . 21
4.5.2 2.6.0 to 2.7.0 . 22
4.5.3 2.5.0 to 2.6.0 . 23
4.5.4 ROSCO v2.4.1 to ROSCO v2.5.0 . 24

4.6 ROSCO_Toolbox tuning .yaml . 25
4.6.1 path_params . 25
4.6.2 turbine_params . 25
4.6.3 controller_params . 26
4.6.4 linmodel_tuning . 38

4.7 Running Bladed simulations with ROSCO controller . 39
4.7.1 Bladed versions 4.6 to current (4.12) . 39
4.7.2 Bladed 4.5 & earlier . 40

i

ii

ROSCO, Release 2.8.0

Version
2.8.0

Date
May 19, 2023

NREL’s Reference OpenSource Controller (ROSCO) tool-set for wind turbine applications designed to ease controller
implementation for the wind turbine researcher. The purpose of these documents is to provide information for the use
of the tool-set.

Fig. 1 shows the general workflow for the ROSCO tool-chain. with OpenFAST

Fig. 1: ROSCO toolchain general workflow

ROSCO Toolbox The python-based toolbox primarily used for tuning the controller and writing the DISCON.IN.

• Generic tuning of NREL’s ROSCO controller

• Simple 1-DOF turbine simulations for quick controller capability verifications

• Parsing of OpenFAST input and output files

• Linear model analysis capability

ROSCO Controller The controller implementation itself. This is compiled to libdiscon.* file, reads the DIS-
CON.IN file, and interfaces with OpenFAST using the Bladed-style interface.

• Fortran based

• Follows Bladed-style control interface

• Modular

CONTENTS 1

ROSCO, Release 2.8.0

2 CONTENTS

CHAPTER

ONE

STANDARD USE

For the standard use case in OpenFAST (or similar), ROSCO will need to be compiled. This is made possible via the
instructions found in Installing the ROSCO tools. Once the controller is compiled, the turbine model needs to point to
the compiled binary. In OpenFAST, this is ensured by changing the DLL_FileName parameter in the ServoDyn input
file.

Additionally, an additional input file is needed for the ROSCO controller. Though the controller only needs to be
compiled once, each individual turbine/controller tuning requires an input file. This input file is generically dubbed
“DISCON.IN”. In OpenFAST, the DLL_InFile parameter should be set to point to the desired input file. The ROSCO
toolbox is used to automatically generate the input file. These instructions are provided in the instructions for Standard
ROSCO Workflow.

3

ROSCO, Release 2.8.0

4 Chapter 1. Standard Use

CHAPTER

TWO

TECHNICAL DOCUMENTATION

A publication highlighting much of the theory behind the controller tuning and implementation methods can be found
at: https://wes.copernicus.org/preprints/wes-2021-19/

5

https://wes.copernicus.org/preprints/wes-2021-19/

ROSCO, Release 2.8.0

6 Chapter 2. Technical Documentation

CHAPTER

THREE

SURVEY

Please help us better understand the ROSCO user-base and how we can improve ROSCO through this brief survey:

7

ROSCO, Release 2.8.0

8 Chapter 3. Survey

CHAPTER

FOUR

LICENSE

Copyright 2021 NREL

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

4.1 Installing the ROSCO tools

As a reminder, the ROSCO toolbox is a python-based tool used to write the DISCON.IN file, which is read by the
ROSCO controller (a compiled binary file). If you only wish to run the controller, you do not need to install the
ROSCO toolbox.

Depending on what is needed, a user can choose to use just the ROSCO controller or to use both the ROSCO controller
and the toolbox. Both the controller and the toolbox should be installed if one wishes to leverage the full ROSCO
tool-chain. Table 4.1 provides an overview of the primary methods available for Installing the ROSCO controller.
Additionally, Table 4.2 provides an overview of the primary methods available to acquire the ROSCO toolbox. Finally,
if you wish to install and use both the controller and toolbox, the section about Full ROSCO Installation provides the
best methods of doing so.

Table 4.1: Methods for Installing the ROSCO Controller

Method Use Case
Direct Download Best for users who simply want to use a released version of the controller without

working through the compilation procedures.
Anaconda Download - ROSCO Best for users who just want to use the controller but prefer to download using

the Anaconda package man age Full ROSCO Installation.
Full ROSCO Installation Best for users who wish to both use the controller and leverage the tools in the

ROSCO toolbox
Compile using CMake Best for users who need to re-compile the source code often, plan to use non-

released versions of ROSCO (including modified source code), or who simply
want to compile the controller themselves so they have the full code available
locally. This is necessary for users who wish to use the ZeroMQ Interface.

9

http://www.apache.org/licenses/LICENSE-2.0

ROSCO, Release 2.8.0

Table 4.2: Methods for Installing the ROSCO Toolbox

Method Use Case
Anaconda Download - ROSCO
Toolbox

Best for users who simply want to use the primary ROSCO toolbox functions

Full ROSCO Installation (Recommended) Best for users who wish to both use the primary ROSCO tool-
box functions, as well run and use the many example and testing scripts available.
This process can be done with or without compiling ROSCO.

For many of the methods used to install both ROSCO and the ROSCO toolbox, both Anaconda and CMake are neces-
sary. Anaconda is a popular package manager used to distribute software packages of various types. Anaconda is used
to download requisite packages and distribute pre-compiled versions of the ROSCO tools. CMake is a build configura-
tion system that creates files as input to a build tool like GNU Make, Visual Studio, or Ninja. CMake does not compile
code or run compilers directly, but rather creates the environment needed for another tool to run compilers and create
binaries. CMake is used to ease the processes of compiling the ROSCO controller locally. For more information on
CMake, please see understanding CMake in the OpenFAST documentation.

4.1.1 Installing the ROSCO controller

The standard ROSCO controller is based in Fortran and must be compiled; the source code can be found at: https:
//github.com/NREL/ROSCO/ROSCO.

Direct Download

The most recent tagged version releases of the controller are available for download. One can simply download these
compiled binary files for their system and point to them in their simulation tools (e.g. through DLL_FileName in the
ServoDyn input file of OpenFAST).

Anaconda Download - ROSCO

Using the popular package manager, Anaconda, the tagged 64-bit versions of ROSCO are available through the conda-
forge channel. In order to download the most recently compiled version release, from an anaconda powershell (Win-
dows) or terminal (Mac/Linux) window, create a new anaconda virtual environment:

conda config --add channels conda-forge
conda create -y --name rosco-env python=3.8
conda activate rosco-env

navigate to your desired folder to save the compiled binary using:

cd <desired_folder>

and download the controller:

conda install -y ROSCO

This will download a compiled ROSCO binary file into the default filepath for any dynamic libraries downloaded via
anaconda while in the ROSCO-env. The ROSCO binary file can be copied to your desired folder using:

cp $CONDA_PREFIX/lib/libdiscon.* <desired_folder>

10 Chapter 4. License

https://www.anaconda.com/
https://cmake.org/
https://openfast.readthedocs.io/en/main/source/install/index.html#understanding-cmake
https://github.com/NREL/ROSCO/ROSCO
https://github.com/NREL/ROSCO/ROSCO
https://github.com/NREL/ROSCO/tags
https://www.anaconda.com/

ROSCO, Release 2.8.0

on linux or:

copy %CONDA_PREFIX%/lib/libdiscon.* <desired_folder>

on Windows.

Compile using CMake

CMake eases the compiling process significantly. We recommend that users use CMake if at all possible, as we cannot
guarantee support for the use of other tools to aid with compiling ROSCO.

On Mac/Linux, standard compilers are generally available without any additional downloads. On 32-bit windows, we
recommend that you install MinGW (Section 2). On 64-bit Windows, you can simply install the MSYS2 toolchain
through Anaconda:

conda install m2w64-toolchain libpython
conda install cmake make # if Windows users would like to install these in anaconda␣
→˓environment

Once the CMake and the required compilers are downloaded, the following code can be used to compile ROSCO.

Clone ROSCO
git clone https://github.com/NREL/ROSCO.git

Compile ROSCO
cd ROSCO/ROSCO
mkdir build
cd build
cmake .. # Mac/linux only
cmake .. -G "MinGW Makefiles" # Windows only
make install

This will generate a file called libdiscon.so (Linux), libdiscon.dylib (Mac), or libdisscon.dll (Windows)
in the /ROSCO/install/lib directory.

ZeroMQ Interface

There is an option to interface ROSCO with external inputs using ZeroMQ. Currently, only externally commanded yaw
offset inputs are supported, though this could easily be expanded if the need arises.

To use the ZeroMQ interface, the software must be downloaded following the ZeroMQ download instructions. Using
CMake, ROSCO can then be compiled to enable this interface by using the ZMQ_CLIENT:ON flag with the cmake
command in Compile using CMake:

cmake -DZMQ_CLIENT:ON ..

4.1. Installing the ROSCO tools 11

https://cmake.org/
http://capsis.cirad.fr/capsis/documentation/mingw-installation
https://zeromq.org/
https://zeromq.org/download/

ROSCO, Release 2.8.0

4.1.2 Installing the ROSCO toolbox

The ROSCO toolbox is based in python and contains all relevant ROSCO tools; the source code can be found at: https:
//github.com/NREL/ROSCO/. In addition to tuning procedures, the ROSCO toolbox also contains example scripts,
a Simulink Model of ROSCO, OpenFAST pre-and post-processing functions, linearized systems analysis tools, and a
testing suite.

Anaconda Download - ROSCO Toolbox

If one wishes to simply use the modules provided in the ROSCO toolbox through scripts of their own, the ROSCO
toolbox can be installed via the conda-forge channel of Anaconda. They can then be accessed using the standard
methods of loading modules in python, e.g:

from ROSCO_toolbox import controller as ROSCO_controller
from ROSCO_toolbox import turbine as ROSCO_turbine

Note that the install procedures for the ROSCO toolbox are the same as in Anaconda Download - ROSCO, but do not
involve moving the controller binary file. In order to download the most recently compiled version release, from an
anaconda powershell (Windows) or terminal (Mac/Linux) window, create a new anaconda virtual environment:

conda config --add channels conda-forge
conda create -y --name rosco-env python=3.8
conda activate rosco-env

navigate to your desired folder to save the compiled binary using:

cd <desired_folder>

and download the controller:

conda install -y ROSCO

4.1.3 Full ROSCO Installation

We recommend using the full ROSCO tool-chain. This allows for full use of the provided functions along with the
developed python packages and controller code,

Please follow the following steps to install the ROSCO tool-chain. You should do step 2 or 3. If you simply want
to install the ROSCO toolbox without the controller, do step 3. If you would like to install the ROSCO toolbox and
compile the controller simultaneously, do step 2.

1. Create a conda environment for ROSCO

conda config --add channels conda-forge # (Enable Conda-forge Channel For Conda Package␣
→˓Manager)
conda create -y --name rosco-env python=3.8 # (Create a new environment named "rosco-env
→˓" that contains Python 3.8)
conda activate rosco-env # (Activate your "rosco-env" environment)

2. Clone and Install the ROSCO toolbox with ROSCO controller

git clone https://github.com/NREL/ROSCO.git
cd ROSCO

(continues on next page)

12 Chapter 4. License

https://github.com/NREL/ROSCO/
https://github.com/NREL/ROSCO/

ROSCO, Release 2.8.0

(continued from previous page)

conda install compilers # (Mac/Linux only)
conda install m2w64-toolchain libpython # (Windows only)
conda env config vars set FC=gfortran # Sometimes needed for Windows
conda install -y wisdem=3.5.0
python setup.py install --compile-rosco

3. Clone and Install the ROSCO toolbox without ROSCO controller

git clone https://github.com/NREL/ROSCO.git
cd ROSCO
python setup.py install

4.1.4 Getting Started

Please see Standard ROSCO Workflow for several example scripts using ROSCO and the ROSCO_toolbox.

4.2 Standard ROSCO Workflow

This page outlines methods for reading turbine models, generating the control parameters of a DISCON.IN: file, and
running aeroelastic simulations to test controllers. A set of example scripts demonstrate the functionality of the ROSCO
toolbox and controller.

4.2.1 Reading Turbine Models

Control parameters depend on the turbine model. The ROSCO_toolbox uses OpenFAST inputs and an additional .
yaml formatted file to set up a turbine object in python. Several OpenFAST inputs are located in Test_Cases/. The
controller tuning .yaml are located in Tune_Cases/. A detailed description of the ROSCO control inputs and tuning
.yaml are provided in The DISCON.IN file and ROSCO_Toolbox tuning .yaml, respectively.

• 01_turbine_model.py loads an OpenFAST turbine model and displays a summary of its information

ROSCO requires the power and thrust coefficients for tuning control inputs and running the extended Kalman filter
wind speed estimator.

• 02_ccblade.py runs cc-blade, a blade element momentum solver from WISDEM, to generate a 𝐶𝑝 surface.

The Cp_Cq_Ct.txt (or similar) file contains the rotor performance tables that are necessary to run the ROSCO con-
troller. This file can be located wherever you desire, just be sure to point to it properly with the PerfFileName
parameter in DISCON.IN.

4.2.2 Tuning Controllers and Generating DISCON.IN

The ROSCO turbine object, which contains turbine information required for controller tuning, along with control
parameters in the tuning yaml and the 𝐶𝑝 surface are used to generate control parameters and DISCON.IN files. To tune
the PI gains of the torque control, set omega_vs and zeta_vs in the yaml. Similarly, set omega_pc and zeta_pc to
tune the PI pitch controller; gain scheduling is automatically handled using turbine information. Generally omega_*
increases the responsiveness of the controller, reducing generator speed variations, but an also increases loading on
the turbine. zeta_* changes the damping of the controller and is generally less important of a tuning parameter, but
could also help with loading. The default parameters in Tune_Cases/ are known to work well with the turbines in this
repository.

4.2. Standard ROSCO Workflow 13

https://github.com/NREL/ROSCO/tree/main/Examples
https://github.com/NREL/ROSCO/tree/main/Test_Cases
https://github.com/NREL/ROSCO/tree/main/Tune_Cases
https://github.com/NREL/ROSCO/tree/main/Tune_Cases

ROSCO, Release 2.8.0

• 03_tune_controller.py loads a turbine and tunes the PI control gains

• 04_simple_sim.py tunes a controller and runs a simple simualtion (not using OpenFAST)

• 05_openfast_sim.py loads a turbine, tunes a controller, and runs an OpenFAST simulation

Each of these examples generates a DISCON.IN file, which is an input to libdiscon.*. When running the controller in
OpenFAST, DISCON.IN must be appropriately named using the DLL_FileName parameter in ServoDyn.

OpenFAST can be installed from source or in a conda environment using:

conda install -c conda-forge openfast

ROSCO can implement peak shaving (or thrust clipping) by changing the minimum pitch angle based on the estimated
wind speed:

• 06_peak_shaving.py loads a turbine and tunes a controller with peak shaving.

By setting the ps_percent value in the tuning yaml, the minimum pitch versus wind speed table changes and is updated
in the DISCON.IN file.

ROSCO also contains a method for distributed aerodynamic control (e.g., via trailing edge flaps):

• 09_distributed_aero.py tunes a controller for distributed aerodynamic control

The ROSCO toolbox also contains methods for working with OpenFAST linear models * 10_linear_params.py
exports a file of the parameters used for the simplified linear models used to tune ROSCO * 11_robust_tuning.py
shows how linear models generated using OpenFAST can be used to tune controllers with robust stability properties.
* 12_tune_ipc.py shows the tuning procedure for IPC

4.2.3 Running OpenFAST Simulations

To run an aeroelastic simulation with ROSCO, the ROSCO input (DISCON.IN) must point to a properly formatted
Cp_Cq_Ct.txt file using the PerfFileName parameter. If called from OpenFAST, the main OpenFAST input points
to the ServoDyn input, which points to the DISCON.IN file and the libdiscon.* dynamic library.

For example in Test_Cases/NREL-5MW :

• NREL-5MW.fst has "NRELOffshrBsline5MW_Onshore_ServoDyn.dat" as the ServoFile input

• NRELOffshrBsline5MW_Onshore_ServoDyn.dat has "../../ROSCO/build/libdiscon.dylib" as the
DLL_FileName input and "DISCON.IN" as the DLL_InFile input. Note that these file paths are relative to
the path of the main fast input (NREL-5MW.fst)

• DISCON.IN has "Cp_Ct_Cq.NREL5MW.txt" as the PerfFileName input

The ROSCO_toolbox has methods for running OpenFAST (and other) binary executables using system calls, as well
as post-processing tools in ofTools/.

Several example scripts are set up to quickly simulate ROSCO with OpenFAST:

• 05_openfast_sim.py loads a turbine, tunes a controller, and runs an OpenFAST simulation

• 07_openfast_outputs.py loads the OpenFAST output files and plots the results

• 08_run_turbsim.py runs TurbSim, for generating turbulent wind inputs

• 14_open_loop_control.py runs an OpenFAST simulation with ROSCO providing open loop control inputs

14 Chapter 4. License

https://github.com/OpenFAST/openfast
https://github.com/NREL/ROSCO/tree/main/ROSCO_toolbox/ofTools

ROSCO, Release 2.8.0

4.2.4 Testing ROSCO

The ROSCO_toolbox also contains tools for testing ROSCO in IEC design load cases (DLCs), located in
ROSCO_testing/. The script run_Testing.py allows the user to set up their own set of tests. By setting testtype,
the user can run a variety of tests:

• lite, which runs DLC 1.1 simulations at 5 wind speed from cut-in to cut-out, in 330 second simulations

• heavy, which runs DLC 1.3 from cut-in to cut-out in 2 m/s steps and 2 seeds for each, in 630 seconds, as well
as DLC 1.4 simulations

• binary-comp, where the user can compare libdiscon.* dynamic libraries (compiled ROSCO source code),
with either a lite or heavy set of simulations

• discon-comp, where the user can compare DISCON.IN controller tunings (and the complied ROSCO source is
constant)

Setting the turbine2test allows the user to test either the IEA-15MW with the UMaine floating semisubmersible or
the NREL-5MW reference onshore turbine.

4.3 ROSCO Toolbox Structure

Here, we give an overview of the structure of the ROSCO toolbox and how the code is implemented.

4.3.1 ROSCO Toolbox File Structure

The primary tools of the ROSCO toolbox are separated into several folders. They include the following:

ROSCO_toolbox

The source code for the ROSCO toolbox generic tuning implementations lives here.

• turbine.py loads a wind turbine model from OpenFAST input files.

• controller.py contains the generic controller tuning scripts

• utilities.py has most of the input/output file management scripts

• control_interface.py enables a python interface to the ROSCO controller

• sim.py is a simple 1-DOF model simulator

• ofTools is a folder containing a large set of tools to handle OpenFAST input files - this is primarily used to run
large simulation sets and to handle reading and processing of OpenFAST input and output files.

4.3. ROSCO Toolbox Structure 15

https://github.com/NREL/ROSCO/tree/main/ROSCO_testing
https://github.com/openfast/openfast
https://github.com/openfast/openfast

ROSCO, Release 2.8.0

Examples

A number of examples are included to showcase the numerous capabilities of the ROSCO toolbox; they are described
in the Standard ROSCO Workflow.

Matlab_Toolbox

A simulink implementation of the ROSCO controller is included in the Matlab Toolbox. Some requisite MATLAB
utility scripts are also included.

ROSCO_testing

Testing scripts for the ROSCO toolbox are held here and showcased with run_testing.py. These can be used to
compare different controller tunings or different controllers all together.

Test_Cases

Example OpenFAST models consistent with the latest release of OpenFAST are provided here for simple testing and
simulation cases.

Tune_Cases

Some example tuning scripts and tuning input files are provided here. The code found in tune_ROSCO.py can be
modified by the user to easily enable tuning of their own wind turbine model.

4.3.2 The ROSCO Toolbox Tuning File

A yaml formatted input file is used for the standard ROSCO toolbox tuning process. This file contains the necessary
inputs for the ROSCO toolbox to load an OpenFAST input file deck and tune the ROSCO controller. It can be found
here: ROSCO_Toolbox tuning .yaml.

4.4 ROSCO Controller Structure

Here, we give an overview of the structure of the ROSCO controller and how the code is implemented.

4.4.1 ROSCO File Structure

The primary functions of the ROSCO toolbox are separated into several files. They include the following:

• DISCON.f90 is the primary driver function.

• ReadSetParameters.f90 primarily handles file I/O and the Bladed Interface.

• ROSCO_Types.f90 allocates variables in memory.

• Constants.f90 establishes some global constants.

• Controllers.f90 contains the primary controller algorithms (e.g. blade pitch control)

16 Chapter 4. License

https://yaml.org/

ROSCO, Release 2.8.0

• ControllerBlocks.f90 contains additional control features that are not necessarily primary controllers (e.g.
wind speed estimator)

• Filters.f90 contains the various filter implementations.

• Functions.f90 contains various functions used in the controller.

4.4.2 The DISCON.IN file

A standard file structure is used as an input to the ROSCO controller. This is, generically, dubbed the DISCON.IN file,
though it can be renamed (In OpenFAST, this file is pointed to by DLL_InFile in the ServoDyn file. Examples of the
DISCON.IN file are found in each of the Test Cases in the ROSCO toolbox, and in the parameter_files folder of
ROSCO.

Table 4.3: DISCON.IN

Primary
Section

Vari-
able

Type Description

DE-
BUG

LoggingLevelInt 0: write no debug files, 1: write standard output .dbg-file, 2: write standard
output .dbg-file and complete avrSWAP-array .dbg2-file

CON-
TROLLER
FLAGS

F_LPFTypeInt Filter type for generator speed feedback signal. 1: first-order low-pass filter, 2:
second-order low-pass filter.

F_NotchTypeInt Notch filter on the measured generator speed and/or tower fore-aft motion (used
for floating). 0: disable, 1: generator speed, 2: tower-top fore-aft motion, 3:
generator speed and tower-top fore-aft motion.

IPC_ControlModeInt Individual Pitch Control (IPC) type for fatigue load reductions (pitch contribu-
tion). 0: off, 1: 1P reductions, 2: 1P+2P reductions.

VS_ControlModeInt Generator torque control mode type. 0: 𝑘𝜔2 below rated, constant torque above
rated, 1: 𝑘𝜔2 below rated, constant power above rated, 2: TSR tracking PI con-
trol below rated, constant torque above rated, 3: TSR tracking PI control below
rated, constant torque above rated

PC_ControlModeInt Blade pitch control mode. 0: No pitch, fix to fine pitch, 1: active PI blade pitch
control.

Y_ControlModeInt Yaw control mode. 0: no yaw control, 1: yaw rate control, 2: yaw-by-IPC.
SS_Mode Int Setpoint Smoother mode. 0: no set point smoothing, 1: use set point smoothing.
WE_Mode Int Wind speed estimator mode. 0: One-second low pass filtered hub height wind

speed, 1: Immersion and Invariance Estimator, 2: Extended Kalman Filter.
PS_Mode Int Pitch saturation mode. 0: no pitch saturation, 1: implement pitch saturation
SD_Mode Int Shutdown mode. 0: no shutdown procedure, 1: shutdown triggered by max

blade pitch.
Fl_Mode Int Floating feedback mode. 0: no nacelle velocity feedback, 1: nacelle velocity

feedback (parallel compensation).
Flp_Mode Int Flap control mode. 0: no flap control, 1: steady state flap angle, 2: PI flap

control.
FIL-
TERS

F_LPFCornerFreqFloat Corner frequency (-3dB point) in the generator speed low-pass filter, [rad/s]

F_LPFDampingFloat Damping coefficient in the generator speed low-pass filter, [-]. Only used only
when F_FilterType = 2

F_NotchCornerFreqFloat Natural frequency of the notch filter, [rad/s]
F_NotchBetaNumDenFloat

Float
Notch damping values of numerator and denominator - determines the width and
depth of the notch, [-]

continues on next page

4.4. ROSCO Controller Structure 17

https://github.com/openfast/openfast

ROSCO, Release 2.8.0

Table 4.3 – continued from previous page
Primary
Section

Vari-
able

Type Description

F_SSCornerFreqFloat Corner frequency (-3dB point) in the first order low pass ..filter for the set point
smoother, [rad/s].

F_FlCornerFreqFloat
Float

Corner frequency and damping ratio for the second order low pass filter of the
tower-top fore-aft motion for floating feedback control [rad/s, -].

F_WECornerFreqFloat Corner frequency (-3dB point) in the first order low pass filter for the wind speed
estimate [rad/s].

F_FlHighPassFreqFloat Natural frequency of first-order high-pass filter for nacelle fore-aft motion
[rad/s]..

F_FlpCornerFreqFloat
Float

Corner frequency and damping ratio in the second order low pass filter of the
blade root bending moment for flap control [rad/s, -].

BLADE
PITCH
CON-
TROL

PC_GS_n Int Number of gain-scheduling table entries

PC_GS_anglesFloat
array,
length =
PC_GS_n

Gain-schedule table: pitch angles [rad].

PC_GS_KP Float
array,
length =
PC_GS_n

Gain-schedule table: pitch controller proportional gains [s].

PC_GS_KI Float
array,
length =
PC_GS_n

Gain-schedule table: pitch controller integral gains [-].

PC_GS_KD Float
array,
length =
PC_GS_n

Gain-schedule table: pitch controller derivative gains [𝑠2]. Currently unused!

PC_GS_TF Float
array,
length =
PC_GS_n

Gain-schedule table: transfer function gains [𝑠2]. Currently unused!

PC_MaxPitFloat Maximum physical pitch limit, [rad].
PC_MinPitFloat Minimum physical pitch limit, [rad].
PC_MaxRatFloat Maximum pitch rate (in absolute value) of pitch controller, [rad/s].
PC_MinRatFloat Minimum pitch rate (in absolute value) in pitch controller, [rad/s].
PC_RefSpdFloat Desired (reference) HSS speed for pitch controller, [rad/s].
PC_FinePitFloat Below-rated pitch angle set-point, [rad]
PC_SwitchFloat Angle above lowest PC_MinPit to switch to above rated torque control, [rad].

Used for VS_ControlMode = 0,1.
INDI-
VID-
UAL
PITCH
CON-
TROL

IPC_IntSatFloat Integrator saturation point (maximum signal amplitude contribution to pitch
from IPC), [rad]

continues on next page

18 Chapter 4. License

ROSCO, Release 2.8.0

Table 4.3 – continued from previous page
Primary
Section

Vari-
able

Type Description

IPC_KI Float
Float

Integral gain for the individual pitch controller: first parameter for 1P reductions,
second for 2P reductions, [-, -].

IPC_aziOffsetFloat
Float

Phase offset added to the azimuth angle for the individual pitch controller: first
parameter for 1P reductions, second for 2P reductions, [rad].

IPC_CornerFreqActFloat Corner frequency of the first-order actuators model, used to induce a phase lag
in the IPC signal [rad/s]. 0: Disable.

VS
TORQUE
CON-
TROL

VS_GenEffFloat Generator efficiency from mechanical power -> electrical power, [should match
the efficiency defined in the generator properties!], [%]

VS_ArSatTqFloat Above rated generator torque PI control saturation limit, [Nm].
VS_MaxRatFloat Maximum generator torque rate (in absolute value) [Nm/s].
VS_MaxTq Float Maximum generator torque (HSS), [Nm].
VS_MinTq Float Minimum generator torque (HSS) [Nm].
VS_MinOMSpdFloat Cut-in speed towards optimal mode gain path, [rad/s]. Used if VS_ControlMode

= 0,1.
VS_Rgn2K Float Generator torque constant in Region 2 (HSS side), [N-m/(rad/s)^2]. Used if

VS_ControlMode = 0,1.
VS_RtPwr Float Rated power [W]
VS_RtTq Float Rated torque, [Nm].
VS_RefSpdFloat Rated generator speed used by torque controller [rad/s].
VS_n Int Number of generator PI torque controller gains. Only 1 is currently supported.
VS_KP Float Proportional gain for generator PI torque controller [1/(rad/s) Nm]. (Used

in the transition 2.5 region if VS_ControlMode = 0,1. Always used if
VS_ControlMode = 2,3)

VS_KI Float Integral gain for generator PI torque controller [1/rad Nm]. (Only used
in the transition 2.5 region if VS_ControlMode = 0,1. Always used if
VS_ControlMode = 2,3)

VS_TSRoptFloat Region 2 tip-speed-ratio [rad]. Generally, the power maximizing TSR. Can use
non-optimal TSR for low axial induction rotors.

SET-
POINT
SMOOTHER

SS_VSGainFloat Variable speed torque controller setpoint smoother gain, [-].

SS_PCGainFloat Collective pitch controller setpoint smoother gain, [-].
WIND
SPEED
ESTI-
MATOR

WE_BladeRadiusFloat Blade length (distance from hub center to blade tip), [m]

WE_CP_n Int Number of parameters in the Cp array
WE_CP Float

Float
Float
Float

Parameters that define the parameterized CP(lambda) function

WE_Gamma Float Adaption gain for the I&I wind speed estimator algorithm [m/rad]
WE_GearboxRatioFloat Gearbox ratio [>=1], [-]
WE_Jtot Float Total drivetrain inertia, including blades, hub and casted generator inertia to

LSS, [kg m^2]
WE_RhoAirFloat Air density, [kg m^-3]
PerfFileNameString File containing rotor performance tables (Cp,Ct,Cq)

continues on next page

4.4. ROSCO Controller Structure 19

ROSCO, Release 2.8.0

Table 4.3 – continued from previous page
Primary
Section

Vari-
able

Type Description

PerfTableSizeInt Int Size of rotor performance tables in PerfFileName, first number refers to num-
ber of blade pitch angles (num columns), second number refers to number of
tip-speed ratios (num rows)

WE_FOPoles_NInt Number of first-order system poles used in the Extended Kalman Filter
WE_FOPoles_vFloat

array,
length =
WE_FOPoles_N

Wind speeds for first-order system poles lookup table [m/s]

WE_FOPolesFloat
array,
length =
WE_FOPoles_N

First order system poles [1/s]

YAW
CON-
TROL

Y_ErrThreshFloat Yaw error threshold. Turbine begins to yaw when it passes this. [rad^2 s]

Y_IPC_IntSatFloat Integrator saturation (maximum signal amplitude contribution to pitch from
yaw-by-IPC), [rad]

Y_IPC_n Int Number of controller gains for yaw-by-IPC
Y_IPC_KP Float

array,
length =
Y_IPC_n

Yaw-by-IPC proportional controller gains Kp [s]

Y_IPC_KI Float
array,
length =
Y_IPC_n

Yaw-by-IPC integral controller gain Ki [-]

Y_IPC_omegaLPFloat Low-pass filter corner frequency for the Yaw-by-IPC controller to filtering the
yaw alignment error, [rad/s].

Y_IPC_zetaLPFloat Low-pass filter damping factor for the Yaw-by-IPC controller to filtering the yaw
alignment error, [-].

Y_MErrSetFloat Yaw alignment error set point, [rad].
Y_omegaLPFastFloat Corner frequency fast low pass filter, [rad/s].
Y_omegaLPSlowFloat Corner frequency slow low pass filter, [rad/s].
Y_Rate Float Yaw rate, [rad/s].

TOWER
FORE-
AFT
DAMP-
ING

FA_KI Float Integral gain for the fore-aft tower damper controller [rad*s/m]. -1 = off

FA_HPF_CornerFreqFloat Corner frequency (-3dB point) in the high-pass filter on the fore-aft acceleration
signal [rad/s]

FA_IntSatFloat Integrator saturation (maximum signal amplitude contribution to pitch from FA
damper), [rad]

MINI-
MUM
PITCH
SAT-
URA-
TION

PS_BldPitchMin_NInt Number of values in minimum blade pitch lookup table.

continues on next page

20 Chapter 4. License

ROSCO, Release 2.8.0

Table 4.3 – continued from previous page
Primary
Section

Vari-
able

Type Description

PS_WindSpeedsFloat
array,
length =
PS_BldPitchMin_n

Wind speeds corresponding to minimum blade pitch angles [m/s]

PS_BldPitchMinFloat
array,
length =
PS_BldPitchMin_n

Minimum blade pitch angles [rad]

SHUT-
DOWN

SD_MaxPitFloat Maximum blade pitch angle to initiate shutdown, [rad]

SD_CornerFreqFloat Cutoff Frequency for first order low-pass filter for blade pitch angle, [rad/s]
FLOAT-
ING

Fl_Kp Float Nacelle velocity proportional feedback gain [s]

FLAP
ACTU-
ATION

Flp_AngleFloat Initial or steady state flap angle [rad]

Flp_Kp Float Trailing edge flap control proportional gain [s]
Flp_Ki Float Trailing edge flap control integral gain [s]
Flp_MaxPitFloat Maximum (and minimum) flap angle [rad]

4.5 API changes between versions

This page lists the main changes in the ROSCO API (input file) between different versions.

The changes are tabulated according to the line number, and flag name. The line number corresponds to the resulting
line number after all changes are implemented. Thus, be sure to implement each in order so that subsequent line
numbers are correct.

4.5.1 2.7.0 to 2.8.0

Optional Inputs - ROSCO now reads in the whole input file and searches for keywords to set the inputs. Blank spaces
and specific ordering are no longer required. - Input requirements depend on control modes. E.g., open loop inputs are
not required if OL_Mode = 0` Cable Control - Can control OpenFAST cables (MoorDyn or SubDyn) using ROSCO
Structural Control - Can control OpenFAST structural control elements (ServoDyn) using ROSCO Active wake control
- Added Active Wake Control (AWC) implementation

4.5. API changes between versions 21

ROSCO, Release 2.8.0

New in ROSCO 2.8.0
Line Input

Name
Example Value

6 Echo 0 ! Echo - (0 - no Echo, 1 - Echo input data to <RootName>.echo)
25 AWC_Mode 0 ! AWC_Mode - Active wake control mode [0 - not used, 1 - complex number method, 2 -

Coleman transform method]
28 CC_Mode 0 ! CC_Mode - Cable control mode [0- unused, 1- User defined, 2- Open loop control]
29 StC_Mode 0 ! StC_Mode - Structural control mode [0- unused, 1- User defined, 2- Open loop control]
139 Ind_CableControl0 ! Ind_CableControl - The column(s) in OL_Filename that contains the cable control inputs

in m [Used with CC_Mode = 2, must be the same size as CC_Group_N]
140 Ind_StructControl0 ! Ind_StructControl - The column(s) in OL_Filename that contains the structural control

inputs [Used with StC_Mode = 2, must be the same size as StC_Group_N]
148 Empty

Line
149 AWC_Section!——- Active Wake Control —————————————————–
150 AWC_NumModes1 ! AWC_NumModes - AWC- Number of modes to include [-]
151 AWC_n 1 ! AWC_n - AWC azimuthal mode [-] (only used in complex number method)
152 AWC_harmonic1 ! AWC_harmonic - AWC Coleman transform harmonic [-] (only used in Coleman transform

method)
153 AWC_freq 0.03 ! AWC_freq - AWC frequency [Hz]
154 AWC_amp 2.0 ! AWC_amp - AWC amplitude [deg]
155 AWC_clockangle0.0 ! AWC_clockangle - AWC clock angle [deg]
165 Empty

Line
166 CC_Section !——- Cable Control ———————————————————
167 CC_Group_N3 ! CC_Group_N - Number of cable control groups
168 CC_GroupIndex2601 2603 2605 ! CC_GroupIndex - First index for cable control group, should correspond to

deltaL
169 CC_ActTau 20.000000 ! CC_ActTau - Time constant for line actuator [s]
170 Empty

Line
171 StC_Section !——- Structural Controllers ———————————————————
172 StC_Group_N3 ! StC_Group_N - Number of cable control groups
173 StC_GroupIndex2818 2838 2858 ! StC_GroupIndex - First index for structural control group, options specified

in ServoDyn summary output

4.5.2 2.6.0 to 2.7.0

Pitch Faults - Constant pitch actuator offsets (PF_Mode = 1) IPC Saturation Modes - Added options for saturating the
IPC command with the peak shaving limit

22 Chapter 4. License

ROSCO, Release 2.8.0

New in ROSCO 2.7.0
Line Input

Name
Example Value

23 PF_Mode0 ! PF_Mode - Pitch fault mode {0 - not used, 1 - constant offset on one or more blades}
56 IPC_SatMode2 ! IPC_SatMode - IPC Saturation method (0 - no saturation (except by PC_MinPit), 1 - satu-

rate by PS_BldPitchMin, 2 - saturate sotfly (full IPC cycle) by PC_MinPit, 3 - saturate softly by
PS_BldPitchMin)

139 PF_Section!——- Pitch Actuator Faults ———————————————————
140 PF_Offsets0.00000000 0.00000000 0.00000000 ! PF_Offsets - Constant blade pitch offsets for blades 1-3 [rad]
141 Empty

Line

4.5.3 2.5.0 to 2.6.0

IPC - A wind speed based soft cut-in using a sigma interpolation is added for the IPC controller

Pitch Actuator - A first or second order filter can be used to model a pitch actuator

External Control Interface - Call another control library from ROSCO

ZeroMQ Interface - Communicate with an external routine via ZeroMQ. Only yaw control currently supported

Updated yaw control - Filter wind direction with deadband, and yaw until direction error changes signs (https:
//iopscience.iop.org/article/10.1088/1742-6596/1037/3/032011)

New in ROSCO 2.6.0
Line Input Name Example Value
19 TD_Mode 0 ! TD_Mode - Tower damper mode {0: no tower damper, 1: feed back translational nacelle

accelleration to pitch angle}
22 PA_Mode 0 ! PA_Mode - Pitch actuator mode {0 - not used, 1 - first order filter, 2 - second order filter}
23 Ext_Mode 0 ! Ext_Mode - External control mode {0 - not used, 1 - call external dynamic library}
24 ZMQ_Mode 0 ! ZMQ_Mode - Fuse ZeroMQ interaface {0: unused, 1: Yaw Control}
33 F_YawErr 0.17952 ! F_YawErr - Low pass filter corner frequency for yaw controller [rad/s].
54 IPC_Vramp 9.120000 11.400000 ! IPC_Vramp - Start and end wind speeds for cut-in ramp function.

First entry: IPC inactive, second entry: IPC fully active. [m/s]
96 Y_uSwitch 0.00000 ! Y_uSwitch - Wind speed to switch between Y_ErrThresh. If zero, only the first

value of Y_ErrThresh is used [m/s]
133 Empty Line N/A
134 PitchActSec !——- Pitch Actuator Model —————————————————–
135 PA_CornerFreq3.140000000000 ! PA_CornerFreq - Pitch actuator bandwidth/cut-off frequency [rad/s]
136 PA_Damping 0.707000000000 ! PA_Damping - Pitch actuator damping ratio [-, unused if PA_Mode = 1]
137 Empty Line
138 ExtConSec !——- External Controller Interface —————————————————–
139 DLL_FileName“unused” ! DLL_FileName - Name/location of the dynamic library in the Bladed-DLL

format
140 DLL_InFile “unused” ! DLL_InFile - Name of input file sent to the DLL (-)
141 DLL_ProcName“DISCON” ! DLL_ProcName - Name of procedure in DLL to be called (-)
142 Empty Line
143 ZeroMQSec !——- ZeroMQ Interface ———————————————————
144 ZMQ_CommAddress“tcp://localhost:5555” ! ZMQ_CommAddress - Communication address for ZMQ server,

(e.g. “tcp://localhost:5555”)
145 ZMQ_UpdatePeriod2 ! ZMQ_UpdatePeriod - Call ZeroMQ every [x] seconds, [s]

4.5. API changes between versions 23

https://iopscience.iop.org/article/10.1088/1742-6596/1037/3/032011
https://iopscience.iop.org/article/10.1088/1742-6596/1037/3/032011
tcp://localhost:5555
tcp://localhost:5555

ROSCO, Release 2.8.0

Modified in ROSCO 2.6.0
Line Input

Name
Example Value

97 Y_ErrThresh4.000000 8.000000 ! Y_ErrThresh - Yaw error threshold/deadbands. Turbine begins to yaw when
it passes this. If Y_uSwitch is zero, only the second value is used. [deg].

98 Y_Rate 0.00870 ! Y_Rate - Yaw rate [rad/s]
99 Y_MErrSet0.00000 ! Y_MErrSet - Integrator saturation (maximum signal amplitude contribution to pitch

from yaw-by-IPC), [rad]

Removed in ROSCO 2.6.0
Line Input

Name
Example Value

96 Y_IPn 1 ! Y_IPC_n - Number of controller gains (yaw-by-IPC)
99 Y_IPC_omegaLP0.20940 ! Y_IPC_omegaLP - Low-pass filter corner frequency for the Yaw-by-IPC con-

troller to filtering the yaw alignment error, [rad/s].
100 Y_IPC_zetaLP1.00000 ! Y_IPC_zetaLP - Low-pass filter damping factor for the Yaw-by-IPC controller to

filtering the yaw alignment error, [-].
102 Y_omegaLPFast0.20940 ! Y_omegaLPFast - Corner frequency fast low pass filter, 1.0 [rad/s]
103 Y_omegaLPSlow0.10470 ! Y_omegaLPSlow - Corner frequency slow low pass filter, 1/60 [rad/s]

4.5.4 ROSCO v2.4.1 to ROSCO v2.5.0

Two filter parameters were added to - change the high pass filter in the floating feedback module - change the low pass
filter of the wind speed estimator signal that is used in torque control

Open loop control inputs, users must specify: - The open loop input filename, an example can be found in Exam-
ples/Example_OL_Input.dat - Indices (columns) of values specified in OL_Filename

IPC - Proportional Control capabilities were added, 1P and 2P gains should be specified

Line Flag
Name

Example Value

20 OL_Mode 0 ! OL_Mode - Open loop control mode {0: no open loop control, 1: open loop control vs.
time, 2: open loop control vs. wind speed}

27 F_WECornerFreq0.20944 ! F_WECornerFreq - Corner frequency (-3dB point) in the first order low pass filter
for the wind speed estimate [rad/s].

29 F_FlHighPassFreq0.01000 ! F_FlHighPassFreq - Natural frequency of first-order high-pass filter for nacelle
fore-aft motion [rad/s].

50 IPC_KP 0.000000 0.000000 ! IPC_KP - Proportional gain for the individual pitch controller: first
parameter for 1P reductions, second for 2P reductions, [-]

125 OL_Filename “14_OL_Input.dat” ! OL_Filename - Input file with open loop timeseries (absolute path or
relative to this file)

126 Ind_Breakpoint1 ! Ind_Breakpoint - The column in OL_Filename that contains the breakpoint (time if
OL_Mode = 1)

127 Ind_BldPitch 2 ! Ind_BldPitch - The column in OL_Filename that contains the blade pitch input in rad
128 Ind_GenTq 3 ! Ind_GenTq - The column in OL_Filename that contains the generator torque in Nm
129 Ind_YawRate 4 ! Ind_YawRate - The column in OL_Filename that contains the generator torque in Nm

24 Chapter 4. License

ROSCO, Release 2.8.0

4.6 ROSCO_Toolbox tuning .yaml

Definition of inputs for ROSCO tuning procedure

toolbox_schema

4.6.1 path_params

FAST_InputFile
[String] Name of *.fst file

FAST_directory
[String] Main OpenFAST model directory, where the *.fst lives, relative to ROSCO dir (if applicable)

rotor_performance_filename
[String] Filename for rotor performance text file (if it has been generated by ccblade already)

4.6.2 turbine_params

rotor_inertia
[Float, kg m^2] Rotor inertia [kg m^2], {Available in Elastodyn .sum file}

rated_rotor_speed
[Float, rad/s] Rated rotor speed [rad/s]

Minimum = 0

v_min
[Float, m/s] Cut-in wind speed of the wind turbine.

Minimum = 0

v_max
[Float, m/s] Cut-out wind speed of the wind turbine.

Minimum = 0

max_pitch_rate
[Float, rad/s] Maximum blade pitch rate [rad/s]

Minimum = 0

max_torque_rate
[Float, Nm/s] Maximum torque rate [Nm/s], {~1/4 VS_RtTq/s}

Minimum = 0

rated_power
[Float, W] Rated Power [W]

Minimum = 0

bld_edgewise_freq
[Float, rad/s] Blade edgewise first natural frequency [rad/s]

Default = 4.0

Minimum = 0

4.6. ROSCO_Toolbox tuning .yaml 25

ROSCO, Release 2.8.0

bld_flapwise_freq
[Float, rad/s] Blade flapwise first natural frequency [rad/s]

Default = 0

Minimum = 0

TSR_operational
[Float] Optimal tip speed ratio, if 0 the optimal TSR will be determined by the Cp surface

Default = 0

Minimum = 0

4.6.3 controller_params

LoggingLevel
[Float] 0- write no debug files, 1- write standard output .dbg-file, 2- write standard output .dbg-file and complete
avrSWAP-array .dbg2-file

Default = 1

Minimum = 0 Maximum = 3

F_LPFType
[Float] 1- first-order low-pass filter, 2- second-order low-pass filter, [rad/s] (currently filters generator speed and
pitch control signals)

Default = 1

Minimum = 1 Maximum = 2

F_NotchType
[Float] Notch on the measured generator speed and/or tower fore-aft motion (for floating) {0- disable, 1- generator
speed, 2- tower-top fore- aft motion, 3- generator speed and tower-top fore-aft motion}

Default = 0

Minimum = 0 Maximum = 3

IPC_ControlMode
[Float] Turn Individual Pitch Control (IPC) for fatigue load reductions (pitch contribution) (0- off, 1- 1P reduc-
tions, 2- 1P+2P reduction)

Default = 0

Minimum = 0 Maximum = 2

VS_ControlMode
[Float] Generator torque control mode in above rated conditions (0- constant torque, 1- constant power, 2- TSR
tracking PI control with constant torque, 3- TSR tracking with constant power)

Default = 2

Minimum = 0 Maximum = 3

PC_ControlMode
[Float] Blade pitch control mode (0- No pitch, fix to fine pitch, 1- active PI blade pitch control)

Default = 1

Minimum = 0 Maximum = 1

26 Chapter 4. License

ROSCO, Release 2.8.0

Y_ControlMode
[Float] Yaw control mode (0- no yaw control, 1- yaw rate control, 2- yaw- by-IPC)

Default = 0

Minimum = 0 Maximum = 2

SS_Mode
[Float] Setpoint Smoother mode (0- no setpoint smoothing, 1- introduce setpoint smoothing)

Default = 1

Minimum = 0 Maximum = 2

WE_Mode
[Float] Wind speed estimator mode (0- One-second low pass filtered hub height wind speed, 1- Immersion and
Invariance Estimator (Ortega et al.)

Default = 2

Minimum = 0 Maximum = 2

PS_Mode
[Float] Pitch saturation mode (0- no pitch saturation, 1- peak shaving, 2- Cp-maximizing pitch saturation, 3-
peak shaving and Cp-maximizing pitch saturation)

Default = 3

Minimum = 0 Maximum = 3

SD_Mode
[Float] Shutdown mode (0- no shutdown procedure, 1- pitch to max pitch at shutdown)

Default = 0

Minimum = 0 Maximum = 1

TD_Mode
[Float] Tower damper mode (0- no tower damper, 1- feed back translational nacelle accelleration to pitch angle

Default = 0

Minimum = 0 Maximum = 1

Fl_Mode
[Float] Floating specific feedback mode (0- no nacelle velocity feedback, 1 - nacelle velocity feedback, 2 - nacelle
pitching acceleration feedback)

Default = 0

Minimum = 0 Maximum = 2

Flp_Mode
[Float] Flap control mode (0- no flap control, 1- steady state flap angle, 2- Proportional flap control)

Default = 0

Minimum = 0 Maximum = 2

PwC_Mode
[Float] Active Power Control Mode (0- no active power control 1- constant active power control, 2- open loop
power vs time, 3- open loop power vs. wind speed)

Default = 0

Minimum = 0 Maximum = 2

4.6. ROSCO_Toolbox tuning .yaml 27

ROSCO, Release 2.8.0

ZMQ_Mode
[Float] ZMQ Mode (0 - ZMQ Inteface, 1 - ZMQ for yaw control)

Default = 0

Minimum = 0 Maximum = 1

PA_Mode
[Float] Pitch actuator mode {0 - not used, 1 - first order filter, 2 - second order filter}

Default = 0

Minimum = 0 Maximum = 2

PF_Mode
[Float] Pitch fault mode {0 - not used, 1 - constant offset on one or more blades}

Default = 0

Minimum = 0 Maximum = 1

Ext_Mode
[Float] External control mode [0 - not used, 1 - call external dynamic library]

Default = 0

Minimum = 0 Maximum = 1

CC_Mode
[Float] Cable control mode [0- unused, 1- User defined, 2- Position control (not yet implemented)]

Default = 0

Minimum = 0 Maximum = 1

StC_Mode
[Float] Structural control mode [0- unused, 1- User defined]

Default = 0

Minimum = 0 Maximum = 1

U_pc
[Array of Floats] List of wind speeds to schedule pitch control zeta and omega

Default = [12]

Minimum = 0

zeta_pc
[Array of Floats or Float] List of pitch controller desired damping ratio at U_pc [-]

Default = [1.0]

omega_pc
[Array of Floats or Float, rad/s] List of pitch controller desired natural frequency at U_pc [rad/s]

Default = [0.2]

interp_type
[String from, [‘sigma’, ‘linear’, ‘quadratic’, ‘cubic’]] Type of interpolation between above rated tuning values
(only used for multiple pitch controller tuning values)

Default = sigma

28 Chapter 4. License

ROSCO, Release 2.8.0

zeta_vs
[Float] Torque controller desired damping ratio [-]

Default = 1.0

Minimum = 0

omega_vs
[Float, rad/s] Torque controller desired natural frequency [rad/s]

Default = 0.2

Minimum = 0

max_pitch
[Float, rad] Maximum pitch angle [rad], {default = 90 degrees}

Default = 1.57

min_pitch
[Float, rad] Minimum pitch angle [rad], {default = 0 degrees}

Default = 0

vs_minspd
[Float, rad/s] Minimum rotor speed [rad/s], {default = 0 rad/s}

Default = 0

ss_vsgain
[Float] Torque controller setpoint smoother gain bias percentage [%, <= 1], {default = 100%}

Default = 1.0

ss_pcgain
[Float, rad] Pitch controller setpoint smoother gain bias percentage [%, <= 1], {default = 0.1%}

Default = 0.001

ps_percent
[Float, rad] Percent peak shaving [%, <= 1], {default = 80%}

Default = 0.8 Maximum = 1

sd_maxpit
[Float, rad] Maximum blade pitch angle to initiate shutdown [rad], {default = 40 deg.}

Default = 0.6981

flp_maxpit
[Float, rad] Maximum (and minimum) flap pitch angle [rad]

Default = 0.1745

twr_freq
[Float, rad/s] Tower natural frequency, for floating only

Minimum = 0

ptfm_freq
[Float, rad/s] Platform natural frequency, for floating only

Minimum = 0

WS_GS_n
[Float] Number of wind speed breakpoints

4.6. ROSCO_Toolbox tuning .yaml 29

ROSCO, Release 2.8.0

Default = 60

Minimum = 0

PC_GS_n
[Float] Number of pitch angle gain scheduling breakpoints

Default = 30

Minimum = 0

Kp_float
[Float, s] Gain of floating feedback control

tune_Fl
[Boolean] Whether to automatically tune Kp_float

Default = True

zeta_flp
[Float] Flap controller desired damping ratio [-]

Minimum = 0

omega_flp
[Float, rad/s] Flap controller desired natural frequency [rad/s]

Minimum = 0

flp_kp_norm
[Float] Flap controller normalization term for DC gain (kappa)

Minimum = 0

flp_tau
[Float, s] Flap controller time constant for integral gain

Minimum = 0

max_torque_factor
[Float] Maximum torque = rated torque * max_torque_factor

Default = 1.1

Minimum = 0

IPC_Kp1p
[Float, s] Proportional gain for IPC, 1P [s]

Default = 0.0

Minimum = 0

IPC_Kp2p
[Float] Proportional gain for IPC, 2P [-]

Default = 0.0

Minimum = 0

IPC_Ki1p
[Float, s] Integral gain for IPC, 1P [s]

Default = 0.0

Minimum = 0

30 Chapter 4. License

ROSCO, Release 2.8.0

IPC_Ki2p
[Float] integral gain for IPC, 2P [-]

Default = 0.0

Minimum = 0

IPC_Vramp
[Array of Floats] wind speeds for IPC cut-in sigma function [m/s]

Default = [0.0, 0.0]

Minimum = 0.0

filter_params

f_lpf_cornerfreq
[Float, rad/s] Corner frequency (-3dB point) in the first order low pass filter of the generator speed [rad/s]

Minimum = 0

f_lpf_damping
[Float, rad/s] Damping ratio in the first order low pass filter of the generator speed [-]

Minimum = 0

f_we_cornerfreq
[Float, rad/s] Corner frequency (-3dB point) in the first order low pass filter for the wind speed estimate [rad/s]

Default = 0.20944

Minimum = 0

f_fl_highpassfreq
[Float, rad/s] Natural frequency of first-order high-pass filter for nacelle fore-aft motion [rad/s]

Default = 0.01042

Minimum = 0

f_ss_cornerfreq
[Float, rad/s] First order low-pass filter cornering frequency for setpoint smoother [rad/s]

Default = 0.6283

Minimum = 0

f_yawerr
[Float, rad/s] Low pass filter corner frequency for yaw controller [rad/

Default = 0.17952

Minimum = 0

f_sd_cornerfreq
[Float, rad] Cutoff Frequency for first order low-pass filter for blade pitch angle [rad/s], {default = 0.41888 ~
time constant of 15s}

Default = 0.41888

4.6. ROSCO_Toolbox tuning .yaml 31

ROSCO, Release 2.8.0

open_loop

flag
[Boolean] Flag to use open loop control

Default = False

filename
[String] Filename of open loop input that ROSCO reads

Default = unused

OL_Ind_Breakpoint
[Float] Index (column, 1-indexed) of breakpoint (time) in open loop index

Default = 1

OL_Ind_BldPitch
[Float] Index (column, 1-indexed) of breakpoint (time) in open loop index

Default = 0

OL_Ind_GenTq
[Float] Index (column, 1-indexed) of breakpoint (time) in open loop index

Default = 0

OL_Ind_YawRate
[Float] Index (column, 1-indexed) of breakpoint (time) in open loop index

Default = 0

PA_CornerFreq
[Float, rad/s] Pitch actuator natural frequency [rad/s]

Default = 3.14

Minimum = 0

PA_Damping
[Float] Pitch actuator damping ratio [-]

Default = 0.707

Minimum = 0

DISCON

These are pass-through parameters for the DISCON.IN file. Use with caution.

LoggingLevel
[Float] (0- write no debug files, 1- write standard output .dbg-file, 2- write standard output .dbg-file and complete
avrSWAP-array .dbg2-file)

Echo
[Float] 0 - no Echo, 1 - Echo input data to <RootName>.echo

Default = 0

F_LPFType
[Float] 1- first-order low-pass filter, 2- second-order low-pass filter (currently filters generator speed and pitch
control signals

32 Chapter 4. License

ROSCO, Release 2.8.0

F_NotchType
[Float] Notch on the measured generator speed and/or tower fore-aft motion (for floating) (0- disable, 1- generator
speed, 2- tower-top fore- aft motion, 3- generator speed and tower-top fore-aft motion)

IPC_ControlMode
[Float] Turn Individual Pitch Control (IPC) for fatigue load reductions (pitch contribution) (0- off, 1- 1P reduc-
tions, 2- 1P+2P reductions)

VS_ControlMode
[Float] Generator torque control mode in above rated conditions (0- constant torque, 1- constant power, 2- TSR
tracking PI control with constant torque, 3- TSR tracking PI control with constant power)

PC_ControlMode
[Float] Blade pitch control mode (0- No pitch, fix to fine pitch, 1- active PI blade pitch control)

Y_ControlMode
[Float] Yaw control mode (0- no yaw control, 1- yaw rate control, 2- yaw- by-IPC)

SS_Mode
[Float] Setpoint Smoother mode (0- no setpoint smoothing, 1- introduce setpoint smoothing)

WE_Mode
[Float] Wind speed estimator mode (0- One-second low pass filtered hub height wind speed, 1- Immersion and
Invariance Estimator, 2- Extended Kalman Filter)

PS_Mode
[Float] Pitch saturation mode (0- no pitch saturation, 1- implement pitch saturation)

SD_Mode
[Float] Shutdown mode (0- no shutdown procedure, 1- pitch to max pitch at shutdown)

Fl_Mode
[Float] Floating specific feedback mode (0- no nacelle velocity feedback, 1- feed back translational velocity, 2-
feed back rotational veloicty)

Flp_Mode
[Float] Flap control mode (0- no flap control, 1- steady state flap angle, 2- Proportional flap control)

F_LPFCornerFreq
[Float, rad/s] Corner frequency (-3dB point) in the low-pass filters,

F_LPFDamping
[Float] Damping coefficient (used only when F_FilterType = 2 [-]

F_NotchCornerFreq
[Float, rad/s] Natural frequency of the notch filter,

F_NotchBetaNumDen
[Array of Floats] Two notch damping values (numerator and denominator, resp) - determines the width and depth
of the notch, [-]

F_SSCornerFreq
[Float, rad/s.] Corner frequency (-3dB point) in the first order low pass filter for the setpoint smoother,

F_WECornerFreq
[Float, rad/s.] Corner frequency (-3dB point) in the first order low pass filter for the wind speed estimate

F_FlCornerFreq
[Array of Floats] Natural frequency and damping in the second order low pass filter of the tower-top fore-aft
motion for floating feedback control

F_FlHighPassFreq
[Float, rad/s] Natural frequency of first-order high-pass filter for nacelle fore-aft motion

4.6. ROSCO_Toolbox tuning .yaml 33

ROSCO, Release 2.8.0

F_FlpCornerFreq
[Array of Floats] Corner frequency and damping in the second order low pass filter of the blade root bending
moment for flap control

PC_GS_n
[Float] Amount of gain-scheduling table entries

PC_GS_angles
[Array of Floats] Gain-schedule table- pitch angles

PC_GS_KP
[Array of Floats] Gain-schedule table- pitch controller kp gains

PC_GS_KI
[Array of Floats] Gain-schedule table- pitch controller ki gains

PC_GS_KD
[Array of Floats] Gain-schedule table- pitch controller kd gains

PC_GS_TF
[Array of Floats] Gain-schedule table- pitch controller tf gains (derivative filter)

PC_MaxPit
[Float, rad] Maximum physical pitch limit,

PC_MinPit
[Float, rad] Minimum physical pitch limit,

PC_MaxRat
[Float, rad/s.] Maximum pitch rate (in absolute value) in pitch controller

PC_MinRat
[Float, rad/s.] Minimum pitch rate (in absolute value) in pitch controller

PC_RefSpd
[Float, rad/s.] Desired (reference) HSS speed for pitch controller

PC_FinePit
[Float, rad] Record 5- Below-rated pitch angle set-point

PC_Switch
[Float, rad] Angle above lowest minimum pitch angle for switch

IPC_IntSat
[Float, rad] Integrator saturation (maximum signal amplitude contribution to pitch from IPC)

IPC_SatMode
[Integer] IPC Saturation method (0 - no saturation, 1 - saturate by PC_MinPit, 2 - saturate by PS_BldPitchMin)

IPC_KP
[Array of Floats] Proportional gain for the individual pitch controller- first parameter for 1P reductions, second
for 2P reductions, [-]

IPC_KI
[Array of Floats] Integral gain for the individual pitch controller- first parameter for 1P reductions, second for 2P
reductions, [-]

IPC_aziOffset
[Array of Floats] Phase offset added to the azimuth angle for the individual pitch controller

IPC_CornerFreqAct
[Float, rad/s] Corner frequency of the first-order actuators model, to induce a phase lag in the IPC signal (0-
Disable)

34 Chapter 4. License

ROSCO, Release 2.8.0

VS_GenEff
[Float, percent] Generator efficiency mechanical power -> electrical power, should match the efficiency defined
in the generator properties

VS_ArSatTq
[Float, Nm] Above rated generator torque PI control saturation

VS_MaxRat
[Float, Nm/s] Maximum torque rate (in absolute value) in torque controller

VS_MaxTq
[Float, Nm] Maximum generator torque in Region 3 (HSS side)

VS_MinTq
[Float, Nm] Minimum generator torque (HSS side)

VS_MinOMSpd
[Float, rad/s] Minimum generator speed

VS_Rgn2K
[Float, Nm/(rad/s)^2] Generator torque constant in Region 2 (HSS side)

VS_RtPwr
[Float, W] Wind turbine rated power

VS_RtTq
[Float, Nm] Rated torque

VS_RefSpd
[Float, rad/s] Rated generator speed

VS_n
[Float] Number of generator PI torque controller gains

VS_KP
[Float] Proportional gain for generator PI torque controller. (Only used in the transitional 2.5 region if
VS_ControlMode =/ 2)

VS_KI
[Float, s] Integral gain for generator PI torque controller (Only used in the transitional 2.5 region if
VS_ControlMode =/ 2)

VS_TSRopt
[Float, rad] Power-maximizing region 2 tip-speed-ratio

SS_VSGain
[Float] Variable speed torque controller setpoint smoother gain

SS_PCGain
[Float] Collective pitch controller setpoint smoother gain

WE_BladeRadius
[Float, m] Blade length (distance from hub center to blade tip)

WE_CP_n
[Float] Amount of parameters in the Cp array

WE_CP
[Array of Floats] Parameters that define the parameterized CP(lambda) function

WE_Gamma
[Float, m/rad] Adaption gain of the wind speed estimator algorithm

4.6. ROSCO_Toolbox tuning .yaml 35

ROSCO, Release 2.8.0

WE_GearboxRatio
[Float] Gearbox ratio, >=1

WE_Jtot
[Float, kg m^2] Total drivetrain inertia, including blades, hub and casted generator inertia to LSS

WE_RhoAir
[Float, kg m^-3] Air density

PerfFileName
[String] File containing rotor performance tables (Cp,Ct,Cq) (absolute path or relative to this file)

PerfTableSize
[Float] Size of rotor performance tables, first number refers to number of blade pitch angles, second number
referse to number of tip-speed ratios

WE_FOPoles_N
[Float] Number of first-order system poles used in EKF

WE_FOPoles_v
[Array of Floats] Wind speeds corresponding to first-order system poles

WE_FOPoles
[Array of Floats] First order system poles

Y_ErrThresh
[Float, rad^2 s] Yaw error threshold. Turbine begins to yaw when it passes this

Y_IPC_IntSat
[Float, rad] Integrator saturation (maximum signal amplitude contribution to pitch from yaw-by-IPC)

Y_IPC_n
[Float] Number of controller gains (yaw-by-IPC)

Y_IPC_KP
[Float] Yaw-by-IPC proportional controller gain Kp

Y_IPC_KI
[Float] Yaw-by-IPC integral controller gain Ki

Y_IPC_omegaLP
[Float, rad/s.] Low-pass filter corner frequency for the Yaw-by-IPC controller to filtering the yaw alignment error

Y_IPC_zetaLP
[Float] Low-pass filter damping factor for the Yaw-by-IPC controller to filtering the yaw alignment error.

Y_MErrSet
[Float, rad] Yaw alignment error, set point

Y_omegaLPFast
[Float, rad/s] Corner frequency fast low pass filter, 1.0

Y_omegaLPSlow
[Float, rad/s] Corner frequency slow low pass filter, 1/60

Y_Rate
[Float, rad/s] Yaw rate

FA_KI
[Float, rad s/m] Integral gain for the fore-aft tower damper controller, -1 = off / >0 = on

FA_HPFCornerFreq
[Float, rad/s] Corner frequency (-3dB point) in the high-pass filter on the fore- aft acceleration signal

36 Chapter 4. License

ROSCO, Release 2.8.0

FA_IntSat
[Float, rad] Integrator saturation (maximum signal amplitude contribution to pitch from FA damper)

PS_BldPitchMin_N
[Float] Number of values in minimum blade pitch lookup table (should equal number of values in
PS_WindSpeeds and PS_BldPitchMin)

PS_WindSpeeds
[Array of Floats] Wind speeds corresponding to minimum blade pitch angles

PS_BldPitchMin
[Array of Floats] Minimum blade pitch angles

SD_MaxPit
[Float, rad] Maximum blade pitch angle to initiate shutdown

SD_CornerFreq
[Float, rad/s] Cutoff Frequency for first order low-pass filter for blade pitch angle

Fl_Kp
[Float, s] Nacelle velocity proportional feedback gain

Flp_Angle
[Float, rad] Initial or steady state flap angle

Flp_Kp
[Float, s] Blade root bending moment proportional gain for flap control

Flp_Ki
[Float] Flap displacement integral gain for flap control

Flp_MaxPit
[Float, rad] Maximum (and minimum) flap pitch angle

OL_Filename
[String] Input file with open loop timeseries (absolute path or relative to this file)

Ind_Breakpoint
[Float] The column in OL_Filename that contains the breakpoint (time if OL_Mode = 1)

Ind_BldPitch
[Float] The column in OL_Filename that contains the blade pitch input in rad

Ind_GenTq
[Float] The column in OL_Filename that contains the generator torque in Nm

Ind_YawRate
[Float] The column in OL_Filename that contains the generator torque in Nm

DLL_FileName
[String] Name/location of the dynamic library {.dll [Windows] or .so [Linux]} in the Bladed-DLL format

Default = unused

DLL_InFile
[String] Name of input file sent to the DLL

Default = unused

DLL_ProcName
[String] Name of procedure in DLL to be called

Default = DISCON

4.6. ROSCO_Toolbox tuning .yaml 37

ROSCO, Release 2.8.0

PF_Offsets
[Array of Floats] Pitch angle offsets for each blade (array with length of 3)

CC_Group_N
[Float] Number of cable control groups

Default = 0

CC_GroupIndex
[Array of Floats] First index for cable control group, should correspond to deltaL

Default = [0]

CC_ActTau
[Float] Time constant for line actuator [s]

Default = 20

StC_Group_N
[Float] Number of cable control groups

Default = 0

StC_GroupIndex
[Array of Floats] First index for structural control group, options specified in ServoDyn summary output

Default = [0]

4.6.4 linmodel_tuning

Inputs used for tuning ROSCO using linear (level 2) models

type
[String from, [‘none’, ‘robust’, ‘simulation’]] Type of level 2 based tuning - robust gain scheduling (robust) or
simulation based optimization (simulation)

Default = none

linfile_path
[String] Path to OpenFAST linearization (.lin) files, if they exist

Default = none

lintune_outpath
[String] Path for outputs from linear model based tuning

Default = lintune_outfiles

load_parallel
[Boolean] Load linearization files in parallel (True/False)

Default = False

stability_margin
[Float or Array of Floats] Desired maximum stability margin

Default = 0.1

38 Chapter 4. License

ROSCO, Release 2.8.0

4.7 Running Bladed simulations with ROSCO controller

ROSCO controller can be used with Bladed.

ROSCO dll must be built to 32bit windows version. Most pre-built discon.dlls in ROSCO github are 64bit, so you may
need to build from source.

Configuration in Bladed is as follows:

4.7.1 Bladed versions 4.6 to current (4.12)

In the Bladed External Controller dialog, fill in the fields as follows:

• ‘Time step’ value non-critical as ROSCO adapts to whatever value is specified. Suggest 10ms.

• ‘Additional Controller Parameters’ - copy all text from DISCON.IN for the relevant turbine and paste in to this
field.

Notes:

– This must be the topmost field called ‘Additional Controller Parameters’, not the field with the same name
lower down in external controller 1 settings.

– Do not add, remove or re-order any lines in this text as this will break ROSCO parsing of the content.

– Any paths such as PerfFileName must be absolute (eg ‘C:ROSCOconfig.txt’, not ‘..config.txt’) for use with
Bladed.

• Add an external controller (click “+”) and set

– ‘Controller location’ - path to the ROSCO libdiscon_win32.dll

– ‘Calling convention’ - __cdecl

– ‘Additional Controller Parameters’ - blank

– ‘Pass parameters by file’ - must be ticked (this instructs Bladed to create a DISCON.IN file at runtime with
the text from the Additional Controller Parameters window, and ROSCO reads from this file)

– ‘Force legacy discon’ - ticked

4.7. Running Bladed simulations with ROSCO controller 39

ROSCO, Release 2.8.0

Example setup shown in the image below

4.7.2 Bladed 4.5 & earlier

In External Controller dialog,

• ‘Communication interval’ - ROSCO adapts to whatever value is specified. Suggest 10ms.

• ‘Controller code’ - path to the ROSCO libdiscon_win32.dll

• ‘Calling convention’ - __cdecl

• ‘External Controller data’ - copy the configuration text from DISCON.IN for the relevant turbine and paste in to
this field.

Notes:

– Do not add, remove or re-order any lines in this text as this will break ROSCO parsing of the content

– Any paths such as PerfFileName must be absolute (eg ‘C:ROSCOconfig.txt’, not ‘..config.txt’) for use with
Bladed.

40 Chapter 4. License

ROSCO, Release 2.8.0

Troubleshooting (all Bladed versions)

Most error messages from ROSCO are not passed to the Bladed GUI for display or logging. They will be visible only
in the transient DOS window that appears while a Bladed simulation is running. If there is a problem you will likely
see only ‘simulation terminated unexpectedly’ in Bladed UI. To view error messages from ROSCO you will need to
run Bladed from the command line. This will ensure that the console window where errors are displayed remains open
to view the error message.

Instructions to run Bladed from the command line are available here on the Bladed Knowledge Base

4.7. Running Bladed simulations with ROSCO controller 41

https://renewableenergysoftwareportal.dnv.com/KnowledgeBase/Details?productID=1&knowledgeBaseID=30&category=Calculation%20Setup&SearchRawUrl=%2FKnowledgeBase%2FSearch%3FproductID%3D1%26category%3DCalculation%2520Setup

	Standard Use
	Technical Documentation
	Survey
	License
	Installing the ROSCO tools
	Installing the ROSCO controller
	Direct Download
	Anaconda Download - ROSCO
	Compile using CMake
	ZeroMQ Interface

	Installing the ROSCO toolbox
	Anaconda Download - ROSCO Toolbox

	Full ROSCO Installation
	Getting Started

	Standard ROSCO Workflow
	Reading Turbine Models
	Tuning Controllers and Generating DISCON.IN
	Running OpenFAST Simulations
	Testing ROSCO

	ROSCO Toolbox Structure
	ROSCO Toolbox File Structure
	ROSCO_toolbox
	Examples
	Matlab_Toolbox
	ROSCO_testing
	Test_Cases
	Tune_Cases

	The ROSCO Toolbox Tuning File

	ROSCO Controller Structure
	ROSCO File Structure
	The DISCON.IN file

	API changes between versions
	2.7.0 to 2.8.0
	2.6.0 to 2.7.0
	2.5.0 to 2.6.0
	ROSCO v2.4.1 to ROSCO v2.5.0

	ROSCO_Toolbox tuning .yaml
	path_params
	turbine_params
	controller_params
	filter_params
	open_loop
	DISCON

	linmodel_tuning

	Running Bladed simulations with ROSCO controller
	Bladed versions 4.6 to current (4.12)
	Bladed 4.5 & earlier

